
AD

Award Number: DAMD17-02-2-0048

TITLE: Monitoring and Mining Data Streams

PRINCIPAL INVESTIGATOR: Stan B. Zdonik , Ph.D.

CONTRACTING ORGANIZATION: Brown University
Providence, RI 02912

REPORT DATE: October 2003

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

20040206 102

Form Approved
REPORT OMB No. 074-0188

DOCUMENTATION PAGE
Public reporting burden for this collection of information Is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave blank)I October 2003 Annual (15 Sep 2002 - 14 Sep 2003)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Monitoring and Mining Data Streams DAMD17-02-2-0048

6. AUTHOR(S)

Stan B. Zdonik, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Brown University
Providence, RI 02912

E-Mail: sbz@cs .brown. edu

9. SPONSORING / MONITORING 10. SPONSORING / MONITORING
AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution Unlimited

13. ABSTRACT (Maximum 200 Words)

The work of the first year of this effort was to support the implementation of the
prototype for the Aurora stream processing engine and to investigate applications for this
technology. An initial version of Aurora was completed, and we worked with
William Vanderschallie on an Army application that involved water supply threat-level
detection. The rest of this report discusses these two activities.

14. SUBJECT TERMS 15. NUMBER OF PAGES

14

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

Cover .. 1

SF 298 .. 2

Table of Contents ... 3

Introduction .. 4

Body ... 4

Key Research Accomplishments ..

Reportable Outcomes ..

Conclusions ...

References ... 7

Appendices ... 8

Annual Report
DEPARTMENT OF THE ARMY

US ARMY MEDICAL RESEARCH AND MATERIEL COMMAND
504 SCOTT STREET

FORT DETRICK, MD 21702-5012

Award Number: DAMD17-02-2-0048

P1's: Stan Zdonik and Ugur Cetintemel

Brown University
Dept. of Computer Science

P.O. Box 1910
Providence, R1 02912

designed application can. (An example of a
Abstract traditionally designed system would be one that

uses a relational database to store intermediate
The work of the first year of this effort was to data.)
support the implementation of the prototype for the
Aurora stream processing engine and to investigate' Resilience to unpredictable stream behavior.
applications for this technology. An initial version It's difficult to write software that makes good
of Aurora was completed, and we worked with use of data that are delayed, lost, or arrive out
William Vanderschallie on an Army application of order. An application that's handles these
that involved water supply threat-level detection. data problems well should be easier to write
The rest of this report discusses these two activies. with a DSMS than with traditional technology.

Simplified / quick programming. Writing

Overview of Aurora software to perform complex manipulation of
data streams can be difficult. It should be faster

The Aurora project represents a new category of to write a powerful stream-monitoring
data management infrastructure known as Data application with a DSMS than with traditional
Stream Management Systems (DSMS). DSMS's technology (e.g., procedural programming).
are a promising new approach to information We validated these hypotheses by writing DSMS-
processing that provides continual monitoring and based applications for various users, described
analysis of data streams. Applications range from below. Based on those experiences, we concluded
financial (e.g., scan stock trade activity for fraud) that these hypotheses are correct: writing stream-
to military (e.g., alert when enemy units are processing applications on top of a DSMS has
inbound) to environmental (e.g., sound an alarm many compelling benefits.
when bad water quality is detected).

The main hypothesis examined by this project is Core Software
that there are compelling reasons to implement
stream-processing applications on top of a DSMS, The Aurora DSMS (hereafter called Aurora) is a
rather than with alternative technologies such as client-server system that runs on the Linux
procedural programming or with a relational operating system. The server component performs
database. A DSMS-based stream-processing the actual data processing. The client component,
application can reap the following benefits: which may run on different computers than the

SSpeed. For a given commodity computer, a server, sends streams of data into the server and
DSMS-based application should be able to receives any alerts / results produced by the server.
process input data faster than a traditionally Aurora provides a GUI to let users visually

describe the data processing that Aurora is to In this application we were able to capitalize
perform, in a language named SQuAl. With this Aurora's robust handling of irregularly timed input
GUI, even relatively novice users can construct or data. Additionally, one PC running the Aurora-
alter sophisticated data stream monitoring based application significantly outperformed that
applications, company's alternative implementation running on a

high-end Sun server.

SQuAI
SQuAl is Aurora's visual language that describes Linear Road Benchmark
the flow of data between data-manipulation Linear Road is a benchmark for stream processing
operators. A SQuA1 program looks much like a engines such as Aurora. This benchmark simulates
flow-chart. The boxes represent data-manipulation an urban highway system that uses "variable
operators, and the arrows connecting the boxes tolling" (also known as "congestion pricing"),
show how the data flow from one operator to the where tolls are determined according to such
next. dynamic factors as congestion, accident proximity,

and travel frequency. As a benchmark, LinearSQuAr's operators are specially designed to Road specifies fixed input data schemas and
intelligently handle delayed data or missing data. Road s s uites fixed input d an histan

For example, a Sort operator will take slightly out- wories a suite suous and histormal

of-order data as its input, and emit reordered data queres that must be supported, and performance

that's properly sorted. This finesse for handling (query and transaction response time)

delayed / missing data makes SQuAl-based requirements.

applications unusually robust in hostile An early Aurora-based implementation of this
environments, such as when battlefield sensors are benchmark supporting one expressway was
temporarily or permanently disabled. demonstrated at SIGMOD 2003. We're presently

developing an alternative implementation of this
benchmark with a popular relational database, to

Performance compare its performance to that of our Aurora-
Aurora's processing throughput is extremely high based implementation.
compared to that of a relational database. Aurora
has been shown to process nearly 200,000 data Environmental Monitoring
tuples per second for a non-trivial application on a
commodity PC with a 2.8 GHz microprocessor. We have also worked with a military medical

research laboratory (William Vanderschallie) on
an application that involves monitoring toxins in

Applications Developed the water. This application is fed streams of data

The following Aurora-based applications were regarding fish behavior (e.g., breathing rate) and
created to verify that Aurora can be used to solve water quality (temperature, pH, oxygenation, and
real-world problems. conductivity). When the fish behave abnormally,

an alarm is sounded.
Some of these applications provided feedback thatled to improvements in the SQuA1 language or in Input data streams were supplied by the army lab"
the implementation of the Aurora software. as a text file. The single data file interleaved fishUltimately Aurora and SQuAs proved to be well observations with water quality observations. Thesuited to these applications, alarm message emitted by Aurora contains fieldsdescribing the fish behavior, and two different

water quality reports: the water quality at the time
Financial Services Application the alarm occurred and the water quality from the

last time the fish behaved normally. The water
Financial service organizations purchase stock quality reports contain not only the simple
ticker feeds from multiple providers and need to measurements, but also the 1-/2-/4-hour sliding
switch in real-time between these feeds if they window deltas for those values.
experience too many problems. We worked with a
major financial services company on developing During the development of the application, we
an Aurora application that detects feed problems observed that Aurora's stream model proved very
and triggers the switch in real time. convenient for describing the required sliding-

window calculations. For example, a single significantly improve performance.
instance of an operator computed the 4-hour
sliding-window deltas of water temperature. Battalion Monitoring
Aurora's GUI for designing query networks also
proved invaluable. It let us easily understand the We have worked closely with a major defense
processing that was to take place, even as our contractor on a battlefield monitoring application.
SQuAl program grew to over 50 operators. In this application, an advanced aircraft gathers

reconnaissance data and sends it to monitoring
The ease with which the processing flow could be stations on the ground. This data includes positions
experimentally reconfigured during development, and images of friendly and enemy units. At some
while remaining comprehensible, was surprising. Itpoint, the enemy units will cross a given
appears that this was only possible both by SQuAl demarcation line and move toward the friendly
having both a well-suited operator set, and by units thereby signaling an attack.
having a GUI tool that let us visualize the stream
processing. Commanders in the ground stations monitor this

data for analysis and tactical decision making.
Please see this document's appendix for a fuller Each ground station is interested in particular
description of this application, subsets of the data, each with differing priorities.

In the real application, the limiting resource is the

Medusa: Distributed Stream bandwidth between the aircraft and the ground.
When an attack is initiated, the priorities for the

Processing data classes change. More data become critical,

Over the last year, we have worked closely with and the bandwidth likely saturates. In this case,
the Medusa project at MIT. selective dropping of data is allowed in order to

service the more important classes.
Medusa is a distributed stream-processing system

that uses Aurora as its single-site processing For our purposes, we built a simplified version of
engine. Medusa takes Aurora queries and this application to test our load shedding
distributes them across multiple computers. These techniques. Instead of modeling bandwidth, we
computers can all be under the control of one assume that the limited resource is the CPU. We
entity or can be organized as a loosely coupled introduce load shedding as a way to save cycles.
federation under the control of different
autonomous participants. Quality-of-Service-based Load
A distributed stream-processing system such as Shedding
Medusa offers several benefits:

1 . It allows stream processing to be We continue to investigate strategies of
.incrementlow strem povessingltiple nointelligently dropping non-critical data from the
incrementally scaled over multiple nodes. streams Aurora processes, during resource-critical

2. It enables high-availability because the moments. We're investigate ways of letting users
processing nodes can monitor and take over express which data are considered most critical in
for each other when failures occur. these scenarios.

3. It allows the composition of stream feeds from
different participants to produce end-to-end Scheduling
services, and to take advantage from the
distribution inherent in many stream In data processing, there are often trade offs
processing applications (e.g., climate between latency and throughput. We continue to
monitoring, financial analysis, etc.). explore the effects of this phenomenon in stream

processing, and for techniques to maximize both of
4. It allows participants to cope with load spikes these important qualities in a DSMS.

without individually having to maintain and
administer the computing, network, and
storage resources required for peak operation. High Availability
When organized as a loosely coupled We are also currently exploring the runtime
federated system, load movements between overhead and recovery time trade offs between
participants based on predefined contracts can different approaches to achieve high-availability

(HA) in distributed stream processing, in the ACM SIGMOD International Conference on
context of Medusa and Aurora*. These approaches Management of Data (SIGMOD'03), San
range from classical Tandem-style process-pairs to Diego, CA, June 2003.
using upstream nodes in the processing flow as
backup for their downstream neighbors. Different • D. Carney, U. Cetintemel, A. Rasin, S.
approaches also provide different recovery Zdonik, M. Cherniack, M. Stonebraker.
semantics where either: (1) some tuples are lost, Reducing Execution Overhead in a Data
(2) some tuples are re-processed, or (3) operations Stream Manager. In proceedings of the
take-over precisely where the failure happened. An ACM Workshop on Management and
important HA goal for the future is handling Processing of Data Streams (MPDS'03), San
network partitions in addition to individual node Diego, CA, June 2003.
failures.

N. Tatbul, U. Qetintemel, S. Zdonik, M.
Papers and Conferences Cherniack, M. Stonebraker. Load

Shedding on Data Streams. In

" N. Tatbul, U. Qetintemel, S. Zdonik, M. proceedings of the ACM Workshop on
Cherniack, M. Stonebraker. Load Management and Processing of Data Streams
Shedding in a Data Stream Manager. In (MPDS'03), San Diego, CA, June 2003.
proceedings of the 29th International D. Abadi, D. Carney, U. Qetintemel, M.
Conference on Very Large Data Bases Cherniack, C. Convey, C. Erwin, E. Galvez,
(VLDB'03), Berlin, Germany, September M. Hatoun, J. Hwang, A. Maskey, A. Rasin,
2003 (to appear). A. Singer, M. Stonebraker, N. Tatbul, Y.

" Don Carney, Ugur Qetintemel, Alex Rasin, Xing, R. Yan and S. Zdonik, Aurora: A
Stan Zdonik, Mitch Chemiack and Michael Data Stream Management System
Stonebraker. Operator Scheduling in a Data (Demonstration), In Proceedings of the ACM
Stream Environment, In Proceedings of the SIGMOD International Conference on
29th International Conference on Very Large Management of Data, San Diego, CA, June,
Data Bases (VLDB), September, 2003. 2003.

" D. Abadi, D. Carney, U. Qetintemel, M. S. Zdonik, M. Stonebraker, M. Chemiack,
Cherniack, C. Convey, S. Lee, M. U. (etintemel, M. Balazinska, and H.
Stonebraker, N. Tatbul, S. Zdonik. Aurora: Balakrishnan. The Aurora and Medusa
A New Model and Architecture for Data Projects. Bulletin of the Technical Committee
Stream Management. In VLDB Journal, on Data Engineering, IEEE Computer Society.
August 2003 (to appear). March 2003 (invited Paper).

" D. Abadi, D. Carney, U. Qetintemel, M. M. Cherniack, H. Balakrishnan, M.
Cherniack, C. Convey, C. Erwin, E. Galvez, Balazinska, D. Carney, U. Qetintemel, Y.
M. Hatoun, J. Hwang, A. Maskey, A. Rasin, Xing, S. Zdonik. Scalable Distributed
A. Singer, M. Stonebraker, N. Tatbul, Y. Stream Processing. In proceedings of the
Xing, R.Yan, S. Zdonik. Aurora: A Data First Biennial Conference on Innovative
Stream Management System Database Systems (CIDR'03), Asilomar, CA,
(Demonstration). In proceedings of the January 2003.

Appendix: Environmental Monitoring Application

The Problem Context
Keeping public water supplies clean and safe is One U. S. Army laboratory has applied the
difficult. A tremendous number of different biological monitoring technique to the water
substances, both known and unknown, can enter passing through a groundwater treatment plant. In
the water supply and harm people and animals. their case, they used a set of fish swimming in that

Unfortunately it's practically impossible to develop water as the "canaries".

mechanized tests to detect the presence of all such Each of the fish swam in its own tube, through
known toxins. Devising tests to alert people to the which the treated water flowed. Each fish's
presence of substances previously not known to be behavior was monitored using small sensors
toxic, without sounding too many false alarms, is implanted on the fish that tracked how well the
an even bigger challenge. fish were breathing, and how much their overall
One solution to this problem is to expose test bodies were moving. These measurements were

organisms to the water, and to continuously provided by the sensor system every 15 minutes.

monitor their behavior. A well chosen organism An alarm was to be sounded whenever a large
will be sensitive to the same chemicals that are fraction of those fish behaved abnormally. The
harmful to humans and our domestic animals. One presumption was that the fish were responding to
strength of using organisms to monitor the water is unusual qualities in the water.
that the presence of previously unanticipated /
unknown toxins may still cause an alarm to sound.periodically takenIf standard laboratory equipment, rather than using traditional automated laboratory equipment.
organisms, was used to monitor the water quality The samples recorded the water's pH, conductivity,
then there would be a smaller chance of noticing oxygenation level, and temperature. The reason forthen theres would teasemunaicipaned ootiins, taking these samples was to give a personthe presence of these unanticipated toxins, responding to a quality alarm additional

This technique was previously practiced by having information to determine what was wrong with the
miners bring canaries into the mineshafts. If the water. These measurements were provided by the
canaries were overcome by poisonous gasses in thesensor system once per hour.
mines, then the miners knew it was time to head When an alarm was sounded because enough fishfor the surface.Whnaalrwasonebeaeeouhfh

were behaving abnormally, our application was to
The motivation for using biological monitoring produce an alert message structured as follows:
systems for our water supplies is therefore clear.
For cost and efficiency reasons, however, we'd like It must contain fields describing the current fish
to automate this process as much as possible. This behavior, and two different water quality
data processing can be difficult to implement with reports: the water quality at the time the alarm
traditional technologies, but is well suited to a occurred and the water quality from the last
DSMS such as Aurora. time the fish behaved normally.

5vr F, 9

Each water quality report contains not only the log file. A Union box (2) serves merely to split the
simple measurements (pH, conductivity, stream into two identical streams. A Map box (3)
oxygenation, and temperature), but also the 1- eliminates all tuple fields except those related to
/2-/4-hour sliding window deltas for those water quality. Each Superbox (4) calculates the
values. sliding window statistics for one of the water

quality attributes. The parallel paths (5) form a
binary join network that brings the results of (4)'s

The Solution sub-networks back into a single stream. The top

Input data streams were supplied by the Army lab branch in (6) has all the tuples where the fish act

as a text file. The single data file interleaved fish oddly, and the bottom branch has the tuples where

observations with water quality observations. the fish act normally. For each of the tuples sent
into (1) describing abnormal fish behavior, (6)

We developed several pieces of software for this emits an alarm message tuple. This output tuple
application: has the sliding window water quality statistics for

A C++ program for (a) reading the text file both the moment the fish acted oddly, and for the
provided by the Army, and sending those most recent previous moment that the fish actedsensor readings into Aurora, and (b) showing normally. Finally the output port (7) shows wherethenswatrerqaingsintyareo t Aurora .and(b)show result tuples are made available to the C++-basedthe water quality alarms emitted by Aurora. monitoring application.
A SQuAl program that monitors the data andperforms the complex calculations needed for Overall, the entire application consisted of 3400
the alarm messages lines of C++ code (primarily for file-parsing and asimple monitoring GUI) and a 53-operator SQuAl

The SQuA1 program is shown in Figure 1 (a program.
snapshot taken from the Aurora GUI): The input
port (1) shows where tuples enter Aurora from the
outside data source. In this case, it is the Technical Details
application's C++ program that reads in the sensor This section provides a more detailed explanation

Figure 1: Aurora SQuAI program for environmental monitoring

of the application's C++ and SQuAl programs. The Percent body movement. A measure of
casual reader may want to skip ahead to the how much the fish's whole body moved
Lessons Learned section below, during the sample period. A low value

indicates a sedentary fish.

Input Data File For the entire fish group, a count was made of
how many fish exhibited unusual values in any

The input data file provided by the Army was of the four measured listed above, during the
broken down into reports, each of which described sample period. An unusual value is referred to
a 15 minute period of readings taken from the fish as Out of Control (OOC). Those group-wide
sensors and the water quality sensors. With 1908 measurements are:
paragraphs, this file described just under 20 days
of activity. Those 1908 reports appear in * Number of fish with out-of-control

chronological order, and there is no gap in the Ventilations-per-minute values.

reports. • Number of fish with out-of-control Volts

This file was produced by specialized software values.

used by the Army lab. High frequency data, ° Number of fish with out-of-control Coughs
sampled many times per second from the fish per minute values.
sensors, was fed to the Army's software. This
software detected events such as fish "coughing" ° Number of fish with out-of-control Percent
or dying, and reported those events in the per-15 body movement values.

minute appearing in the file they provided to us. • Number of dead fish. This is the number of

We did discuss with the Army lab the possibility fish reckoned to be dead during the sample

of having Aurora perform that high-resolution period.

analysis of the sensor data. We eventually agreed ° Simple water characteristics. While
ignore this domain for the time being, because they summaries of the fish' status were calculated
deemed the alarm-sounding problem to be more every 15 minutes, the traditional water quality
pressing. measurements were only taken every 30

Because the data file provided by the Army lab minutes. The effect in the data file is that the

wasn't specifically tailored for use by the Aurora water quality was reported every 15 minutes,

project, it contained some data in each 15 minute but the values of those measurements would

report that were superfluous to our application. We only change in the file every 30 minutes. As

won't discuss those data in this paper. stated earlier, the measured water quality
properties are pH, oxygenation level,

The interesting data for each 15 minute report are conductivity, and temperature.
as follows:

" A timestamp describing which 15 minute C++ Input Processing
period the report covers.

"A serial number. The reports are numbered 1, Aurora provides a simple C++ library for sending
, 3data items into a SQuAl program, and for2, 3, ... , 1908. receiving the results. This program essentially

" For each of the eight fish monitored: converts the "stream" of reports present in the data
"" file, into a stream of tuples, one tuple per report,*Ventilations per minute. This is simply the th,' setit. uoat epoesdb h

fish's average breathing rate during the that's sent into Aurora to be processed by the

sample period. application's SQuA1 program.

" Volts. This is the average received signal
strength of the sensors affixed to the fish's The Need for Latches
gills. Implementing this application made us aware of a

" Coughs per minute. Fish can cough, and design limitation in the SQuAl language. Recall

do so under certain hostile condition. This isfrom our original requirements that when the fish

the average number of coughs per minute are acting strangely, we need to report not only the

during the sample period. present water quality, but also the water quality as
of the last time the fish were behaving normally.

For instance, suppose the data file described the 3. C++ program: If the report is non-alarm-
following history: worthy, record its water quality and timestamp

for future use. If the report is alarm-worthy,
Time Fish Behavior store in to the report tuple the water quality and

10: 15 a.m. Normal timestamp of the last non-alarm-worthy report.

4. SQuAl program: Performs the rest of its logic

10:30 a.m. Abnormal. (sliding average calculations, etc.) on the report
tuple.

10:45 a.m. Abnormal. urora wasn't originally designed to permit user-

supplied C++ code to perform supplemental
11:00 a.m. Abnormal. processing in the middle of a SQuAl program, as

would have occurred in Step 3 above. Therefore,
our application performed Steps 1-3 in its C++

Then our application is expected to produce three program before submitting the the report to
alerts: One each at 10:30, 10:45, and 11:00. SQuAl, even though SQuA1 is fully qualified to
Furthermore, each of those alerts needs to include perform Step 2.
the details of the water quality at 10:15, the last As of this writing, Aurora and SQuAI have been
time the fish behaved normally. improved in two ways either of which would have

SQuAl didn't provide any functionality for let us avoid implementing Step 2 in our C++
retaining and accessing the values of particular program:
tuples that had appeared earlier in the data stream. SQuAI's "latch" mechanism (offered by its new
For expediency we chose to make these " and "latc meanism (ofed bise
calculations in the C++ program that fed our Read and Update operators), would have
SQuAl program, rather than rushing a change to permitted Step 3 to be implemented in SQuAl.
the SQuAl language. Since we wrote this 0 Aurora now permits user-defined C++
application, however, SQuAl has improved to functions to be readily invoked by a SQuAl
provide this needed "latch" functionality, program. So even if the application insisted on

implementing Step 3 in C++, he could have
offered that C++ code as a User Defined

Detecting Alarm-worthy Reports Function (UDF).
The logic for deciding whether a particular 15-
minute report is worth of raising an alarm for can Box-by-box walkthrough
easily be expressed in either a C++ program or a
SQuAl program. In this section we'll explore the role each box in

Unfortunately the problem mentioned immediately the SQuA1 program plays in the overall
above, in the section "The Need for Latches", application. The numbering of the subsections
complication this part of our application, below corresponds to the yellow-background

labels placed on Figure 1.
As explained above, we needed the C++ program
to discover, for each alarm-worthy report, what
the water quality was as of the last-non-alarm Section 1: Input box
report. This in turn means the C++ program The box labeled iO, on the left side of the SQuAl
needed to know whether a report was alarm- program shown in Figure 1, represents where the
worthy or not. tuples supplied by the C++ program enter the

If we had chosen to implement the alarm- SQuAl program. This box itself does no work - it
worthiness logic in SQuAl then we would have just indicates an entry point into the SQuA1
had each report undergo the following data flow: program.

1. C++ program: Reads the data file and submits The tuples submitted by the C++ program into this
its reports to Aurora. box contain the following fields, whose meanings

are explained above.
2. SQuAl program: Sets a field in each report,

indicating whether or not its alarm-worthy. • serial number (integer)

"* report timestamp (timestamp) • Report timestamp

"* water temperature Celsius (floating point) • Water quality measurements: pH, conductivity,

"* pH (floating point) oxygenation level, and temperature.

"At the time this was done because we believed that
* conductivity (mS/cm) (floating point) downstream Aggregate operators required the

"* dissolved oxygen (mg/i) (floating point) absence of all irrelevant fields. As of this writing,

"* Alarm-worthy ("Y" or "N"). Calculated by the however, we no longer believe that to be true.

C++ program.
We needed the per-fish measures (ventilations / Section 4: Superboxes
minute, volts, cough rate, and percent body
movement) to calculate this value, but we don't In this section we see four Superboxes. Each
need those per-fish values in subsequent logic. Superbox is a visual substitute for a collection of
That's why those per-fish data don't appear in boxes and arrows that are present there in thethis tuple. SQuAl network. Using a Superboxes in a SQuAlprogram is analogous to using a subroutines in a

" Serial number of the most recent previous procedural programming language. We used
report that wasn't alarm-worthy (integer). Superboxes here to merely to reduce the visual
Calculated by the C++ program. complexity of the SQuAl program.

"* Number of fish with out-of-control Each one of these Superboxes is use to calculate
Ventilations-per-minute values (integer) the 1-hour, 2-hour, and 4-hour sliding window

"* Number of fish with out-of-control Volts values change for a particular water quality measure.

(integer) For example, each time a tuple enters the top
"* Number of fish with out-of-control Coughs per Superbox in section "4", a tuple is emitted that

minute values (integer) with the following information:

"* Number of fish with out-of-control Percent * Serial number of the tuple that just entered the

body movement values (integer) box

"• Number of dead fish (integer) * Timestamp of the tuple that just entered the box

. Three fields: The numerical differences

Section 2: Union box between the water temperature of the tuple that
just entered the box, and the tuple pertaining to

In general, SQuAl permits many arrows to leave a water quality samples taken one, two, and four
particular box. When a tuple is emitted by the box, hours ago.
a copy of it is placed onto each of those arrows. (Briefly, an Aggregate box performs ongoing

A design oversight in the original Aurora calculations, such as "average" or "sum= on some
implementation forced at most one arrow to leave field in the tuples that have recently passed
an Input box. through the box. The Aggregate operator has

Tuples simply pass though a Union box that has complicated functionality, and the interested reader

only one input arrow. Since multiple arrows can be1i referred to recent papers describing the SQuAl

drawn leaving a a Union box, we used on where to programming language.)

give us the ability to send two copies of the tuples Each one of these Superboxes uses three
entering the SQuAl program out to different parts Aggregate boxes: one Aggregate box for each of
of the program. (Newer versions of Aurora are freethe different time lengths over which the deltas
from this problem.) were to be computed.

For example with the Water Temperature
Section 3: Map box Superbox: One of its constituent Aggregate boxes

emits the 1-hour temperature delta, one Aggregate
This box eliminates some of the data fields from box emits the 2-hour temperature delta, and one
the report tuples entering it, leaving only: emits the 4-hour temperature delta. Inside each

* Report serial number Superboxes, several Join boxes are used to merge
the results of the three Aggregate boxes into a

single tuple. It's these tuples that are emitted by the percent body movements, or were dead
overall Superbox. . whether or not the report is alarm-worthy

S the serial number of the most recent previousSection 5: Binary Join networkreothawsntlrm otyreport that wasn't alarm-worthy

Each of the Superboxes from section "4" emits a In this section of the SQuAI program, we combine
tuple with various statistics about the same water these data with the statistics provide by the tuples
quality sample. In this section, we merge together leaving section "5" to produce the tuples that
all of the tuples pertaining to a particular water ultimately are emitted by this SQuA1 program.
quality sample into a single tuple. This merge is
done ultimately to permit the SQuAl program to The leftmost box in this section is a Filter box.
emit one tuple bearing all of the information Any report tuples that is alarm-worthy are emitted
relevant to an alarm, rather than spreading that on the top arrow leaving the Filter box. The report
information over multiple output tuples. tuples that aren't alarm-worthy are emitted on the

bottom arrow leaving the filter box.
A Join box takes corresponding tuples from its two

different input streams, and produces a tuple with On each of those two branches, a report tuples,
the combined fields from those input tuples. In regardless of whether or not it's alarm-worthy, it
section "4", this "correspondence" is defined as themated with the tuple from section "5" that bears
two input tuples having identical serial numbers. the water quality statistics calculated for that

report. As occurred in section "5", the tuples are
Because a Join box can take only two input mated with each other by the Join box when they
streams, we can't merge the results of all the have identical values in their Serial Number field.
Superboxes with just one Join box. Instead, we use
a binary tree of Join boxes to ultimately produce a Finally, the rightmost Join box brings these top
single tuple for each input report tuple. and bottom branches together. Recall that report

tuples not only have a field giving their own serial
Notice that a Map box follows each Join box. A number, but also the serial number of the most
Map box can be used produce tuples that lack or recent non-alarm-worthy report. This Join box uses
rename fields that appeared in the box's input these two fields, to produce a tuple with the
stream. Here we use Map boxes to simplify the following information:
names of fields (automatically) produced by the
Join boxes. As of this writing, the Join operator • For the alarm-worth tuple: All of the present
has been improved so that it doesn't produce output water/fish data available, as well as the water
tuples whose fields have hard-to-read names. quality statistics calculated in section "5".

• The same information, but for last non-alarm

Section 6: Reuniting report tuples report tuple preceding the alarm-worthy report.

with their water-quality statistics As we did in sections "4" and "5", we conclude

Recall that section "5" of the SQuAl program with a Map box to rename awkwardly named

ultimately produces one tuple for each 15-minute fields produced by the preceding Join box.

report in the Army-supplied data file. These tuples
leaving section "5" contain the 1-,2-, and 4-hour Section 7: Output box
changes in pH, conductivity, oxygenation level,
and temperature of the water as of the 15-minute Just as the Input box of section "1" is a
period described by that report tuple. placeholder, this Output box is a do-nothing

placeholder representing where the data calculated
The other stream of tuples coming into section "6" by this SQuAl program leaves Aurora and is made
is straight from the Union box in section "2". available to the C++ program.
Unlike the tuples from section "6", the tuples from
section "2" continue still contain information such
as: Lessons Learned
" the present value of each of the water quality During the development of the application, we

measures observed that Aurora's stream model proved very

" the number of fish that had out-of-control convenient for describing the required sliding-
ventilation rates, voltages, cough rates, or window calculations. For example, a single

instance of the aggregate operator computed the 4-
hour sliding-window deltas of water temperature.

Aurora's GUI for designing query networks also
proved invaluable. As the query network grew
large in the number of operators used, there was
great potential for overwhelming complexity. The
ability to manually place the operators and arcs on
a workspace, however, permitted a visual
representation of "subroutine" boundaries that let
us comprehend the entire query network as we
refined it.

We found that small changes in the SQuAl
language design would have greatly reduced our
processing network complexity. For example,
Aggregate boxes apply some window function
(such DELTA(water-pH)), to the tuples a
sliding window. Had an Aggregate box been
capable of evaluating multiple window functions at
the same time on its window (such as
DELTA(water-pH) and DELTA(water-temp)), we
could have used far fewer boxes. Many of these
changes have since been made to SQuAl.

The ease with which the processing flow could be
experimentally reconfigured during development,
while remaining comprehensible, was surprising. It
appears that this was only possible by having both
a well-suited operator set, and a GUI tool that let
us visualize the processing. It seems likely that this
application was developed at least as quickly in
Aurora as it would have been with standard
procedural programming. One large benefit the
Aurora implementation has over a procedural
implementation, however, is that we find it easier
to comprehend and explain the processing logic by
looking at a query network GUI than by reading
pages of procedural source code.

